
Vue-Router

In a JavaScript web application, ​a router is the part that syncs the currently displayed

view with the browser address bar content​.

In other words, it’s the ​part that makes the URL change when you click something in

the page​, and helps to show the correct view when you hit a specific URL.

Traditionally, the Web is built around URLs. When you hit a certain URL, a specific

page is displayed.

With the introduction of ​applications that run inside the browser and change what

the user sees​, ​many applications broke this interaction​, and you had to manually

update the ​URL with the browser’s History API​.

You need a router when you need to sync URLs to views in your app. It’s a very

common need, and all the major modern frameworks now allow you to manage

routing.

The ​Vue Router library is the way to go for Vue.js applications​. Vue does not enforce

the use of this library. You can use whatever generic routing library you want, or also

create your own History API integration​, but the benefit of using ​Vue Router is that

it’s official​.

This means it’s maintained by the same people who maintain Vue, so you get a more

consistent integration in the framework, and the guarantee that it’s always going to

be compatible in the future, no matter what.

Installation

Vue Router is available via npm with the package named vue-router.

If you use Vue via a script tag, you can include Vue Router using

<script src="https://unpkg.com/vue-router"></script>

If you use the Vue CLI, install it using:

npm install vue-router

Once you install vue-router and make it available either using a script tag or via Vue

CLI, you can now import it in your app.

You import it after vue, and you call Vue.use(VueRouter) to ​install​ it inside the app:

import Vue from 'vue'

import VueRouter from 'vue-router'

Vue.use(VueRouter)

After you call Vue.use() passing the router object, in any component of the app you

have access to these objects:

● this.$router is the router object

● this.$route is the current route object

The router object

The router object, accessed using ​this.$router​ ​from any component when the Vue

Router is installed in the root Vue component​, offers many nice features.

We can make the app navigate to a new route using

● this.$router.push()

● this.$router.replace()

● this.$router.go()

which resemble the pushState, replaceState and go methods of the History API.

● push()​ is used to go to a ​new route​, ​adding​ a new item to the ​browser

history

● replace() ​is the same, except it ​does not push​ a new state ​to the history

● go() goes back and forth​, accepting a number that can be positive or

negative to go back in the history

Defining the routes

A ​router-link​ component ​renders an ​a​ tag by default (you can change that). Every

time the route changes, either by clicking a link or by changing the URL, a

router-link-active​ class is added to the element that refers to the active route,

allowing you to style it.

The ​router-view component​ is where the ​Vue Router will put the content​ that

matches the current URL.

When using the Vue Router, you don’t pass a render property but instead, you use

router.

new Vue({

 router

}).$mount('#app')

is shorthand for:

new Vue({

 router: router

}).$mount('#app')

What happens when a user clicks a router-link?

The application will render the route component that matches the URL passed to the

link.

The new route component that handles the URL is instantiated and its guards called,

and the old route component will be destroyed.

Dynamic routing

A very common need is to handle dynamic routes, like having all posts under /post/,

each with the slug name:

● /post/first

● /post/another-post

● /post/hello-world

You can achieve this using a dynamic segment.

Those were static segments:

const router = new VueRouter({

 routes: [

 { path: '/', component: Home },

 { path: '/login', component: Login },

 { path: '/about', component: About }

]

})

We add in a dynamic segment to handle blog posts:

const router = new VueRouter({

 routes: [

 { path: '/', component: Home },

 { path: '/post/:post_slug', component: Post },

 { path: '/login', component: Login },

 { path: '/about', component: About }

]

})

Notice the :post_slug syntax. This means that you can use any string, and that will be

mapped to the post_slugplaceholder.

You’re not limited to this kind of syntax. Vue relies on ​this library​ to parse dynamic

routes, and you can go wild with Regular Expressions.

Now inside the Post route component we can reference the route using $route, and

the post slug using $route.params.post_slug:

const Post = { template: '<div>Post: {{ $route.params.post_slug }}</div>'}

https://github.com/pillarjs/path-to-regexp

You can have as many dynamic segments as you want, in the same URL:

/post/:author/:post_slug

In the case of dynamic routes, what happens is a little different.

For Vue to be more efficient, instead of destroying the current route component and

re-instantiating it, it reuses the current instance.

When this happens, Vue calls the beforeRouteUpdate life cycle event.

Using props

In the examples, I used $route.params.* to access the route data. A component

should not be so tightly coupled with the router, and instead, we can use props:

const Post = {

 props: ['post_slug'],

 template: '<div>Post: {{ post_slug }}</div>'

}

const router = new VueRouter({

 routes: [

 { path: '/post/:post_slug', component: Post, props: true }

]

})

Notice the ​props: true passed to the route object to enable this functionality​.

Nested routes

Before I mentioned that you can have as many dynamic segments as you want, in the

same URL, like:

/post/:author/:post_slug

So, say we have an Author component taking care of the first dynamic segment:

<template>

 <div id="app">

 <router-view></router-view>

 </div>

</template>

<script>

import Vue from 'vue'

import VueRouter from 'vue-router'

Vue.use(Router)

const Author = {

 template: '<div>Author: {{ $route.params.author}}</div>'

}

const router = new VueRouter({

 routes: [

 { path: '/post/:author', component: Author }

]

})

new Vue({

 router

}).$mount('#app')

</script>

We can insert a second router-view component instance inside the Author template:

const Author = {

 template: '<div>Author: {{

$route.params.author}}<router-view></router-view></div>'

}

We add the Post component:

const Post = {

 template: '<div>Post: {{ $route.params.post_slug }}</div>'

}

Then we’ll inject the inner dynamic route in the VueRouter configuration:

const router = new VueRouter({

 routes: [{

 path: '/post/:author',

 component: Author,

 children: [

 path: ':post_slug',

 component: Post

]

 }]

})

Redirections

Redirecting is also done in the ​routes​ configuration. To redirect from ​/a​ to ​/b​:

const router = new VueRouter({

 routes: [

 { path: '/a', redirect: '/b' }

]

})

The redirect can also be targeting a named route:

const router = new VueRouter({

 routes: [

 { path: '/a', redirect: { name: 'foo' }}

]

})

 Alias

A redirect means when the user visits ​/a​, the URL will be replaced by ​/b​, and then

matched as ​/b​. But what is an alias?

An alias of ​/a​ as ​/b​ means when the user visits ​/b​, the URL remains ​/b​, but it will be

matched as if the user is visiting ​/a​.

The above can be expressed in the route configuration as:

const router = new VueRouter({

 routes: [

 { path: '/a', component: A, alias: '/b' }

]

})

An alias gives you the freedom to map a UI structure to an arbitrary URL, instead of

being constrained by the configuration's nesting structure.

Advanced Topics

Named Routes

Sometimes it is more convenient to identify a route with a name, especially when

linking to a route or performing navigations. You can give a route a name in the

routes​ options while creating the Router instance:

const router = new VueRouter({

 routes: [

 {

 path: '/user/:userId',

 name: 'user',

 component: User

 }

]

})

To link to a named route, you can pass an object to the ​router-link​ component's ​to

prop:

<router-link :to="{ name: 'user', params: { userId: 123 }}">User</router-link>

This is the exact same object used programatically with ​router.push()​:

router.push({ name: 'user', params: { userId: 123 }})

In both cases, the router will navigate to the path ​/user/123​.

Navigation Guards

As the name suggests, the navigation guards provided by ​vue-router​ are primarily

used to guard navigations either by redirecting it or canceling it. There are a number

of ways to hook into the route navigation process: globally, per-route, or

in-component.

Remember that params or query changes won't trigger enter/leave navigation

guards. You can either ​watch the ​$route​ object​ to react to those changes, or use the

beforeRouteUpdate​ in-component guard

https://router.vuejs.org/guide/advanced/navigation-guards.html#global-resolve-gu

ards

Reacting to Params Changes

One thing to note when using routes with params is that when the user navigates

from ​/user/foo​ to ​/user/bar​, the same component instance will be reused. Since both

routes render the same component, this is more efficient than destroying the old

instance and then creating a new one. However, this also means that the lifecycle

hooks of the component will not be called.

To react to params changes in the same component, you can simply watch the ​$route

object:

const User = {

https://router.vuejs.org/guide/essentials/dynamic-matching.html#reacting-to-params-changes
https://router.vuejs.org/guide/essentials/dynamic-matching.html#reacting-to-params-changes
https://router.vuejs.org/guide/essentials/dynamic-matching.html#reacting-to-params-changes
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-resolve-guards
https://router.vuejs.org/guide/advanced/navigation-guards.html#global-resolve-guards

 template: '...',

 watch: {

 '$route' (to, from) {

 // react to route changes...

 }

 }

}

Or, use the ​beforeRouteUpdate​ ​navigation guard​ introduced in 2.2:

const User = {

 template: '...',

 beforeRouteUpdate (to, from, next) {

 // react to route changes...

 // don't forget to call next()

 }

}

Transitions

Since the ​<router-view>​ is essentially a dynamic component, we can apply transition

effects to it the same way using the ​<transition>​ component:

<transition>

 <router-view></router-view>

</transition>

https://vuejs.org/v2/guide/transitions.html

https://router.vuejs.org/guide/advanced/navigation-guards.html
https://vuejs.org/v2/guide/transitions.html

